Thompson & Thompson Genetics in Medicine, 8th Edition

Sources and Acknowledgments

Chapter 2

Figure 2-1 Based on Brown TA: Genomes, ed 2, New York, 2002, Wiley-Liss. Inset from Paulson JR, Laemmli UK: The structure of histone-depleted metaphase chromosomes. Cell 12:817-828, 1977. Reprinted by permission of the authors and Cell Press.

Figure 2-3 Based on Watson JD, Crick FHC: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737-738, 1953.

Figure 2-7 Based on data from European Bioinformatics Institute and Wellcome Trust Sanger Institute: Ensembl release 70, January 2013. Available from http://www.ensembl.org, v37.

Figure 2-10 Courtesy Stuart Schwartz, University Hospitals of Cleveland, Ohio.

Figure 2-11 Courtesy Stuart Schwartz, University Hospitals of Cleveland, Ohio.

Figure 2-16 Modified from Moore KL, Persaud TVN: The developing human: clinically oriented embryology, ed 6, Philadelphia, 1998, WB Saunders.

Chapter 3

Figure 3-2 Data from European Bioinformatics Institute and Wellcome Trust Sanger Institute: Ensembl release 70, January 2013. Available from http://www.ensembl.org.

Figure 3-7 Original data from Lawn RM, Efstratiadis A, O'Connell C, et al: The nucleotide sequence of the human β-globin gene. Cell 21:647-651, 1980.

Chapter 5

Figure 5-2 Redrawn from ISCN 2013.

Figure 5-3 Redrawn from ISCN 2013.

Figure 5-4 Ideograms redrawn from ISCN 2013; photomicrographs courtesy Genetics Department, The Hospital for Sick Children, Toronto, Canada.

Figure 5-5 Images courtesy M. Katharine Rudd, Emory Genetics Laboratory, Atlanta, Georgia.

Figure 5-6 A and B reprinted from Lee C: Structural genomic variation in the human genome. In Ginsburg GS, Willard HF, editors: Genomic and personalized medicine, ed 2, New York, 2013, Elsevier, pp. 123-132. Ccourtesy M. Katharine Rudd, Emory Genetics Laboratory, Atlanta, Georgia.

Figure 5-8 Data summarized from Hsu LYF: Prenatal diagnosis of chromosomal abnormalities through amniocentesis. In Milunsky A, editor: Genetic disorders and the fetus, ed 4, Baltimore, 1998, Johns Hopkins University Press, pp 179-248.

Figure 5-9 A courtesy Center for Human Genetics Laboratory, University Hospitals of Cleveland. B courtesy M. Katharine Rudd, Emory Genetics Laboratory. C courtesy Daynna J. Wolff, Medical University of South Carolina. D original data from Dan S, Chen F, Choy KW, et al: Prenatal detection of aneuploidy and imbalanced chromosomal arrangements by massively parallel sequencing. PLoS One 7:e27835, 2012.

Chapter 6

Figure 6-1 Data from Hook EB, Cross PK, Schreinemachers DM: Chromosomal abnormality rates at amniocentesis and in live-born infants. JAMA 249:2034-2038, 1983.

Figure 6-2 From Jones KL, Jones MC, del Campo M: Smith's recognizable patterns of human malformation, ed 7, Philadelphia, 2013, WB Saunders.

Figure 6-5 C fluorescence in situ hybridization image courtesy Hutton Kearney, Duke University Medical Center.

Figure 6-6 B and C from Jones KL, Jones MC, del Campo M: Smith's recognizable patterns of human malformation, ed 7, Philadelphia, 2013, WB Saunders. D based on data from Zhang X, Snijders A, Segraves R, et al: High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genome hybridization. Am J Hum Genet 76:312-326, 2005. E courtesy M. Katharine Rudd, Emory Genetics Laboratory, Atlanta, Georgia.

Figure 6-7 A from Jones KL: Smith's recognizable patterns of human malformation, ed 4, Philadelphia, 1988, WB Saunders, p 173. B courtesy Jan Friedman, University of British Columbia. From Magenis RE, Toth-Fejel S, Allen LJ, et al: Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am J Med Genet 35:333-349, 1990. Copyright © 1990, Wiley-Liss, Inc. Reprinted by permission of John Wiley and Sons, Inc. C courtesy M. Katharine Rudd, Emory Genetics Laboratory, Atlanta, Georgia. D modified from GeneReviews. Available from www.ncbi.nlm.nih.gov/books/NBK1116/. Copyright © University of Washington.

Figure 6-13 B data from Amos-Landfraf JM, Cottle A, Plenge RM, et al: X chromosome inactivation patterns of 1005 phenotypically unaffected females. Am J Hum Genet 79:493-499, 2006.

Figure 6-15 A from Jones KL, Jones MC, del Campo M: Smith's recognizable patterns of human malformation, ed 7, Philadelphia, 2013, WB Saunders. B from Grumbach MM, Hughes IA, Conte FA: Disorders of sex differentiation. In Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, editors: Williams textbook of endocrinology, ed 10, Philadelphia, 2003, WB Saunders.

Figure 6-17 From Moore KL, Persaud TVN: The developing human: clinically oriented embryology, ed 5, Philadelphia, 1993, WB Saunders.

Figure 6-18 Courtesy L. Pinsky, McGill University, Montreal, Canada.

Figure 6-19 Modified from Moreno-De-Luca A, Myers SM, Challman TD, et al: Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol 12:406-414, 2013, with permission.

Chapter 7

Figure 7-9 From Kelikian H: Congenital deformities of the hand and forearm, Philadelphia, 1974, WB Saunders.

Figure 7-11 Images courtesy K. Arahata, National Institute of Neuroscience, Tokyo.

Figure 7-16 From Shears DJ, Vassal HJ, Goodman FR, et al: Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis. Nat Genet 19:70-73, 1998.

Figure 7-20 Data courtesy Dr. M. Macdonald, Massachusetts General Hospital, Boston.

Figure 7-21 Data courtesy Dr. Ben Roa, Baylor College of Medicine, Houston, Texas.

Figure 7-22 Courtesy Peter Ray, The Hospital for Sick Children, Toronto, Canada.

Figure 7-23 From Nolin SL: Familial transmission of the FMR1 CGG repeat. Am J Hum Genet 59:1252-1261, 1996. The University of Chicago Press.

Chapter 8

Figure 8-1 B data from Sive PH, Medalie JH, Kahn HA, et al: Distribution and multiple regression analysis of blood pressure in 10,000 Israeli men. Am J Epidemiol 93:317-327, 1971.

Figure 8-3 Data from Johnson BC, Epstein FH, Kjelsberg MO: Distributions and familial studies of blood pressure and serum cholesterol levels in a total community—Tecumseh, Michigan. J Chronic Dis 18:147-160, 1965.

Figure 8-4 Courtesy Sir Alec Jeffreys, University of Leicester, United Kingdom.

Figure 8-6 Modified from an original figure courtesy Larry Almonte, with permission.

Figure 8-7 Redrawn from Kajiwara K, Berson EL, Dryja TP: Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264:1604-1608, 1994.

Figure 8-9 Original data provided by A. Chakravarti, Johns Hopkins University, Baltimore, Maryland.

Figure 8-10 Modified from Trowsdale J, Knight JC: Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 14:301-323, 2013.

Figure 8-11 Modified from Roberts JS, Cupples LA, Relkin NR, et al: J Geriatr Psychiatry Neurol 2005 18:250-255.

Chapter 9

Figure 9-1 From Novembre J, Galvani AP, Slatkin M: The geographic spread of the CCR5 Δ32 HIV-resistance allele. PLoS Biol 3:e339, 2005.

Figure 9-2 From Levran O, Awolesi O, Shen PH, et al: Estimating ancestral proportions in a multi-ethnic US sample: implications for studies of admixed populations. Hum Genomics 6:2, 2012.

Figure 9-3 From Paschou P, Ziv E, Burchard EG, et al: PCA-correlated SNPs for structure identification in worldwide human populations. PLoS Genet 3:1672-1686, 2007.

Chapter 10

Figure 10-8 Modified from original figures of Thomas Hudson, McGill University, Canada.

Figure 10-9 Based on data and diagrams provided by Thomas Hudson, Quebec Genome Center, Montreal, Canada.

Figure 10-11 From Fritsche LG, Chen W, Schu M, et al: Seven new loci associated with age-related macular degeneration. Nature Genet 17:1783-1786, 2013.

Chapter 11

Figure 11-3 A redrawn from Stamatoyannopoulos G, Nienhuis AW: Hemoglobin switching. In Stamatoyannopoulos G, Nienhuis AW, Leder P, Majerus PW, editors: The molecular basis of blood diseases, Philadelphia, 1987, WB Saunders. B redrawn from Wood WG: Haemoglobin synthesis during fetal development. Br Med Bull 32:282-287, 1976.

Figure 11-4 Redrawn from Kazazian HH Jr, Antonarakis S: Molecular genetics of the globin genes. In Singer M, Berg P, editors: Exploring genetic mechanisms, Sausalito, CA, 1997, University Science Books.

Figure 11-5 From Kaul DK, Fabry ME, Windisch P, et al: Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J Clin Invest 72:22, 1983.

Figure 11-6 Redrawn from Ingram V: Sickle cell disease: molecular and cellular pathogenesis. In Bunn HF, Forget BG, editors: Hemoglobin: molecular, genetic, and clinical aspects, Philadelphia, 1986, WB Saunders.

Figure 11-7 Redrawn from Orkin SH: Disorders of hemoglobin synthesis: the thalassemias. In Stamatoyannopoulos G, Nienhuis AW, Leder P, Majerus PW, editors: The molecular basis of blood diseases, Philadelphia, 1987, WB Saunders, pp 106-126.

Figure 11-8 From Hoffman R, Furie B, McGlave P, et al: Hematology: basic principles and practice, ed 5, 2008, Elsevier.

Figure 11-9 Redrawn from Kazazian HH: The thalassemia syndromes: molecular basis and prenatal diagnosis in 1990. Semin Hematol 27:209-228, 1990.

Figure 11-11 Modified from Stamatoyannopoulos G, Grosveld F: Hemoglobin switching. In Stamatoyannopoulos G, Majerus PW, Perlmutter RM, Varmus H, editors: The molecular basis of blood diseases, ed 3, Philadelphia, 2001, WB Saunders.

Chapter 12

Figure 12-4 Derived from Nowacki PM, Byck S, Prevost L, Scriver CR: PAH mutation analysis consortium database: 1997. Prototype for relational locus-specific mutation databases. Nucl Acids Res 26:220-225, 1998, by permission of Oxford University Press.

Figure 12-5 Modified from Sandhoff K, Conzelmann E, Neufeld EF, et al: The GM2 gangliosidoses. In Scriver CR, Beaudet AL, Sly WS, Valle D, editors: The metabolic bases of inherited disease, ed 6, New York, 1989, McGraw-Hill, pp 1807-1839.

Figure 12-7 From McIntosh N, Helms P, Smyth R, Logan S: Inborn errors of metabolism. In Forfar and Arneil's textbook of pediatrics. Edinburgh, 2008, Churchill Livingstone.

Figure 12-9 Redrawn from Larson C: Natural history and life expectancy in severe α1-antitrypsin deficiency, Pi Z. Acta Med Scand 204:345-351, 1978.

Figure 12-10 From Stoller JK, Aboussouan LS: α1-Antitrypsin deficiency. Lancet 365:2225-2236, 2005.

Figure 12-11 Redrawn from Kappas A, Sassa S, Galbraith RA, Nordmann Y: The porphyrias. In Scriver CR, Beaudet AL, Sly WS, Valle D, editors: The metabolic bases of inherited disease, ed 6, New York, 1989, McGraw-Hill, pp 1305-1365.

Figure 12-13 Redrawn from Goldstein JL, Brown MS: Familial hypercholesterolemia. In Scriver CR, Beaudet AL, Sly WS, Valle D, editors: The metabolic bases of inherited disease, ed 6, New York, 1989, McGraw-Hill, pp 1215-1250.

Figure 12-14 Modified from Brown MS, Goldstein JL: The LDL receptor and HMG-CoA reductase—two membrane molecules that regulate cholesterol homeostasis. Curr Top Cell Regul 26:3-15, 1985.

Figure 12-15 Based on Zielinski J: Genotype and phenotype in cystic fibrosis. Respiration 67:117-133, 2000.

Figure 12-16 Courtesy R. H. A. Haslam, The Hospital for Sick Children, Toronto.

Figure 12-17 Courtesy K. Arahata, National Institute of Neuroscience, Tokyo.

Figure 12-20 Courtesy P. N. Ray, The Hospital for Sick Children, Toronto.

Figure 12-21 Courtesy T. Costa, The Hospital for Sick Children, Toronto.

Figure 12-22 Redrawn from Byers PH: Disorders of collagen biosynthesis and structure. In Scriver CR, Beaudet AL, Sly WS, Valle D, editors: The metabolic bases of inherited disease, ed 6, New York, 1989, McGraw-Hill, pp 2805-2842.

Figure 12-24 Reproduced with permission from Nussbaum RL, Ellis CE: Alzheimer's disease and Parkinson's disease. N Engl J Med 348:1356-1364, 2003.

Figure 12-25 Reproduced with permission from Nussbaum RL, Ellis CE: Alzheimer's disease and Parkinson's disease. N Engl J Med 348:1356-1364, 2003.

Figure 12-26 Modified in part from Shoffner JM, Wallace DC: Oxidative phosphorylation disease. In Scriver CR, Beaudet AL, Sly WS, Valle D, editors: The metabolic and molecular bases of inherited disease, ed 7, New York, 1995, McGraw-Hill. The location of some of the disorders is taken from DiMauro S, Schon EA: Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656-2568, 2003.

Figure 12-27 Modified from Chinnery PF, Turnbull DM: Mitochondrial DNA and disease. Lancet 354:SI17-SI21, 1999.

Figure 12-28 Based partly on an unpublished figure courtesy John A. Phillips III, Vanderbilt University Nashville.

Chapter 13

Figure 13-1 Modified from Valle D: Genetic disease: an overview of current therapy. Hosp Pract 22:167-182, 1987.

Figure 13-2 From Campeau PM, Scriver CR, Mitchell JJ: A 25-year longitudinal analysis of treatment efficacy in inborn errors of metabolism. Mol Genet Metab 95:11-16, 2008.

Figure 13-3 From Campeau PM, Scriver CR, Mitchell JJ: A 25-year longitudinal analysis of treatment efficacy in inborn errors of metabolism. Mol Genet Metab 95:11-16, 2008.

Figure 13-5 From Brown MS, Goldstein JL: A receptor-mediated pathway for cholesterol homeostasis. Science 232:4, 1986. Copyright by the Nobel Foundation.

Figure 13-6 From Goya M, Alvarez M, Teixido-Tura G, et al: Abdominal aortic dilatation during pregnancy in Marfan syndrome. Rev Esp Cardiol (Engl Ed) 65:288-289, 2012.

Figure 13-8 From Ramsey BW, Davies J, McElvaney NG, et al: A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663-1672, 2011.

Figure 13-9 Redrawn from Valle D: Genetic disease: an overview of current therapy. Hosp Pract 22:167-182, 1987.

Figure 13-11 Redrawn from Barton NW, Furbish FS, Murray GJ, et al: Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc Natl Acad Sci U S A 87:1913-1916, 1990.

Figure 13-12 Modified from Saunthararajah Y, Lavelle D, DeSimone J: DNA hypomethylating reagents and sickle cell disease. Br J Haematol 126:629-636, 2004.

Figure 13-13 From van Deutekom JC, Janson AA, Ginjaar IB, et al: Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677-2686, 2007.

Figure 13-15 From Staba SL, Escolar ML, Poe M, et al: Cord-blood transplantation from unrelated donors in patients with Hurler's syndrome. N Engl J Med 350:1960-1969, 2004.

Figure 13-17 From Biffi A, Montini E, Lorioli L, et al: Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158, 2013.

Chapter 14

Figure 14-1 Images courtesy Dr. Leslie Biesecker, Bethesda, Maryland.

Figure 14-2 Image courtesy Dr. Judith Hall, University of British Columbia, Vancouver, Canada.

Figure 14-3 Image courtesy Dr. Mason Barr, Jr., University of Michigan, Ann Arbor, Michigan.

Figure 14-5 Reprinted with permission from Jones KL, Jones MC, del Campo M: Smith's recognizable patterns of human malformation, ed 7, Philadelphia, 2013, WB Saunders.

Figure 14-6 A-C adapted in modified form from Wolpert L: Principles of development, New York, 2002, Oxford University Press. D from Pooh RK, Kurjak A: Recent advances in 3D assessment of various fetal anomalies. J Ultrasound Obstet Gynecol 3:1-23, 2009.

Figure 14-7 Redrawn from Hauk R: Frequently asked questions about bats, 2011, Western National Parks Association. Available from http://www.batsrule.info/batsrule-helpsavewildlife/2013/7/7/bat-wings-have-evolved-to-be-different-yet-similar-to-other-species.

Figure 14-8 Reprinted with permission from Ogilvie CM, Braude PR, Scriven PN: Preimplantation diagnosis—an overview. J Histochem Cytochem 53:255-260, 2005.

Figure 14-9 Reprinted with permission from Jones KL: Smith's recognizable patterns of human malformation, ed 6, Philadelphia, 2005, WB Saunders.

Figure 14-10 Reprinted with permission from Moore KL, Persaud TVN: The developing human: clinically oriented embryology, ed 6, Philadelphia, 1998, WB Saunders.

Figure 14-11 Reprinted with permission from Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus H: The molecular basis of blood diseases, ed 2, Philadelphia, 1994, WB Saunders.

Figure 14-13 Reprinted with permission from Ogilvie CM, Braude PR, Scriven PN: Preimplantation diagnosis—an overview. J Histochem Cytochem 53:255-260, 2005.

Figure 14-15 From Wolpert L, Beddington R, Brockes J, et al: Principles of development, New York, 1998, Oxford University Press. Copyright 1998, Oxford University Press.

Figure 14-16 Redrawn from Tjian R: Molecular machines that control genes. Sci Am 272:54-61, 1995.

Figure 14-17 Reprinted with permission from Muragaki Y, Mundlos S, Upton J, et al: Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13Science 272:548-551, 1996.

Figure 14-18 A from Lumsden A, Graham A: Neural patterning: a forward role for hedgehog. Curr Biol 5:1347-1350, 1995. Copyright 1995, Elsevier Science. B from Wolpert L, Beddington R, Brockes J, et al: Principles of development, New York, 1998, Oxford University Press.

Figure 14-19 From Roessler E, Belloni E, Gaudenz K, et al: Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14:357-360, 1996.

Figure 14-20 Modified from Wilson PD: Polycystic kidney disease. N Engl J Med 350:151-164, 2004. Copyright 2004, Massachusetts Medical Society.

Figure 14-21 Diagram modified from Gupta A, Tsai L-H, Wynshaw-Boris A: Life is a journey: a genetic look at neocortical development. Nat Rev Genet 3:342-355, 2002.

Figure 14-22 A from Partington MW: An English family with Waardenburg's syndrome. Arch Dis Child 34:154-157, 1959. B from DiGeorge AM, Olmsted RW, Harley RD: Waardenburg's syndrome. A syndrome of heterochromia of the irides, lateral displacement of the medial canthi and lacrimal puncta, congenital deafness, and other characteristic associated defects. J Pediatr 57:649-669, 1960. C from Jones KL: Smith's recognizable patterns of human malformation, ed 6, Philadelphia, 2005, WB Saunders.

Figure 14-23 From Carlson BM: Human embryology and developmental biology, ed 3, Philadelphia, 2004, Mosby.

Figure 14-24 Modified from Gilbert SF: Developmental biology, ed 7, Sunderland, Massachusetts, 2003, Sinauer Associates.

Chapter 15

Figure 15-7 Photograph courtesy B. L. Gallie, The Hospital for Sick Children, Toronto.

Figure 15-10 Adapted from Hemminki K, Sundquist J, Lorenzo Bermejo J: Familial risks for cancer as the basis for evidence-based clinical referral and counseling. Oncologist 13:239-247, 2008.

Figure 15-13 Adapted from Reis-Filho J, Pusztai L: Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378:1812-1823, 2011.

Chapter 17

Figure 17-2 From Moore KL: The developing human: clinically oriented embryology, ed 4, Philadelphia, 1988, WB Saunders.

Figure 17-3 Images courtesy A. Toi, Toronto General Hospital, Toronto, Canada.

Figure 17-4 Images courtesy A. Toi, Toronto General Hospital, Toronto, Canada.

Figure 17-5 Redrawn from Wald NJ, Cuckle HS: Recent advances in screening for neural tube defects and Down syndrome. In Rodeck C, editor: Prenatal diagnosis, London, 1987, Bailliére Tindall, pp 649-676.

Figure 17-6 Courtesy Mary Norton, University of California, San Francisco.

Figure 17-9 Modified from Kalousek DK: Current topic: confined placental mosaicism and intrauterine fetal development. Placenta 15:219-230, 1994.

Chapter 18

Figure 18-1 Data from Fuchs CS, Giovannucci EL, Colditz GA, et al: A prospective study of family history and the risk of colorectal cancer. N Engl J Med 331:1669-1674, 1994.

Figure 18-2 Modified with permission from Guengerich F: Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 8:E101-E111, 2006.

Case Studies

Figure C-1 A from French LE, Prins C: Erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis. In Bolognia JL, Jorizzo JL, Schaffer JV, editors: Dermatology, ed 3, Philadelphia, 2012, Elsevier, pp 319-333. © 2012, Elsevier Limited. All rights reserved. B from Armstrong AW: Erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis. In Schwarzenberger K, Werchniak AE, Ko CJ: General dermatology, Philadelphia, 2009, Elsevier, pp 23-28. © 2009, Elsevier Limited. All rights reserved.

Figure C-2 Courtesy S. Unger, R. S. Lachman, and D. L. Rimoin, Cedars-Sinai Medical Center, Los Angeles.

Figure C-3 Courtesy Alan Bird, Moorfields Eye Hospital, London.

Figure C-4 Courtesy D. Armstrong, Baylor College of Medicine and Texas Children's Hospital, Houston.

Figure C-5 Courtesy Christa Lese Martin, Autism and Developmental Medicine Institute, Geisinger Health System, Danville, Pennsylvania.

Figure C-6 Courtesy Rosanna Weksberg and Cheryl Shuman, Hospital for Sick Children, Toronto, Canada.

Figure C-7 Courtesy A. Liede and S. Narod, Women's College Hospital and University of Toronto, Canada.

Figure C-8 Courtesy J. R. Lupski, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, and C. Garcia, Department of Neurology, Tulane University, New Orleans.

Figure C-9 From Jones K: Smith's recognizable patterns of human malformation, ed 6, Philadelphia, 2005, Elsevier.

Figure C-10 Courtesy M. M. LeBeau and H. T. Abelson, University of Chicago.

Figure C-11 Courtesy Harris Yfantis and Raymond Cross, University of Maryland and Veterans Administration Medical Center, Baltimore.

Figure C-12 Courtesy J. Rutledge, University of Washington and Children's Hospital and Medical Center, Seattle.

Figure C-13 Audiogram courtesy Virginia W. Norris, Gallaudet University.

Figure C-14 From Gowers WR: Pseudohypertrophic muscular paralysis. A clinical lecture. London, 1879, J. and A. Churchill.

Figure C-15 Courtesy J. Rutledge, University of Washington and Children's Hospital and Medical Center, Seattle, Washington.

Figure C-16 Courtesy M. L. Levy, Department of Dermatology, Baylor College of Medicine, Houston.

Figure C-17 Courtesy Lori Bean and Katie Rudd, Emory Genetics Laboratory, Emory University, Atlanta, Georgia.

Figure C-18 From Helms CA, Major NM, Anderson MW, et al: Musculoskeletal MRI, ed 2, Philadelphia, 2009, WB Saunders, pp. 20-49.

Figure C-19 Redrawn from WHO Working Group: Glucose-6-phosphate dehydrogenase deficiency. Bull World Health Organ 67:601, 1989, by permission.

Figure C-20 Courtesy Victor Gordeuk, Howard University, Washington, DC.

Figure C-21 Modified from Stefanini M, Dameshek W: The hemorrhagic disorders: a clinical and therapeutic approach, New York, 1962, Grune & Stratton, p 252, by permission. Photographic restoration courtesy B. Moseley-Fernandini.

Figure C-22 A courtesy D. Goodman and S. Sargeant, Dartmouth University, Hanover, New Hampshire. B and C courtesy Raj Kapur, University of Washington, Seattle.

Figure C-23 Courtesy M. Muenke, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland. Modified by permission from Nanni L, Ming JE, Bocian M, et al: The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8:2479-2488, 1999.

Figure C-24 Courtesy M. R. Hayden, University of British Columbia, Vancouver, Canada.

Figure C-25 A and B from Schoen FJ: The heart. In Kumar V, Abbas AK, Aster JC: Robbins and Cotran pathologic basis of disease, Philadelphia, 2015, WB Saunders, pp 523-578. C from Issa ZF, Miller JM, Zipes DP: Clinical arrhythmology and electrophysiology: a companion to Braunwald's heart disease, Philadelphia, 2012, WB Saunders, pp 618-624.

Figure C-26 Modified from Oakley WG, Pyke DA, Taylor KW: Clinical diabetes and its biochemical basis. Oxford, 1968, Blackwell Scientific Publications, p 258, by permission. Photographic restoration courtesy B. Moseley-Fernandini.

Figure C-27 Reproduced with permission from Peleg D, Kennedy CM, Hunter SK: Intrauterine growth restriction: identification and management. Am Fam Physician 58:453-460, 466-467, 1998.

Figure C-28 A modified with permission from Liu BA, Juurlink DN: Drugs and the QT interval—caveat doctor. N Engl J Med 351:1053-1056, 2004. B modified from Chiang C, Roden DM: The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol 36:1-12, 2000.

Figure C-29 Courtesy T. Pal and S. Narod, Women's College Hospital and University of Toronto, Canada.

Figure C-30 Courtesy A. V. Levin, The Hospital for Sick Children and University of Toronto, Canada.

Figure C-31 Courtesy Tina Cowan, Stanford School of Medicine.

Figure C-32 Courtesy D. Chitayat, The Hospital for Sick Children and University of Toronto, Canada.

Figure C-33 Courtesy Annette Feigenbaum, The Hospital for Sick Children, Toronto, Canada.

Figure C-34 Courtesy K. Yohay, Johns Hopkins School of Medicine, Baltimore, Maryland.

Figure C-35 Courtesy R. A. Lewis, Baylor College of Medicine, Houston.

Figure C-37 Courtesy J. Rutledge, Department of Pathology, University of Washington, Seattle.

Figure C-38 Courtesy S. Heeger, University Hospitals of Cleveland.

Figure C-39 Courtesy R. A. Lewis, Baylor College of Medicine, Houston.

Figure C-40 Courtesy M. Segawa, Segawa Neurological Clinic for Children, Tokyo. Modified from Segawa M: Pathophysiology of Rett syndrome from the stand point of clinical characteristics. Brain Dev 23:S94-S98, 2001.

Figure C-41 Courtesy B. Bejjani and L. Shaffer, Baylor College of Medicine, Houston.

Figure C-42 From Nathan DG, Oski FA: Hematology of infancy and childhood, Philadelphia, 1981, WB Saunders.

Figure C-43 Courtesy A. V. Levin, The Hospital for Sick Children and University of Toronto, Canada.

Figure C-44 Courtesy N. Olivieri, The Hospital for Sick Children and University of Toronto, Canada.

Figure C-45 From Eichelbaum M, Ingelman-Sundberg M, Evans WE: Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:119-137, 2006.

Figure C-46 Courtesy H. Meyerson and Robert Hoffman, Case Western Reserve University, Cleveland, Ohio.

Figure C-47 Modified from Lyon AJ, Preece MA, Grant DB: Growth curve for girls with Turner syndrome. Arch Dis Child 60:932, 1985, by permission.

Figure C-48 Courtesy M. L. Levy, Baylor College of Medicine and Texas Children's Hospital, Houston.