Medical Physiology, 3rd Edition

References

Books and Reviews

Alper SL. Genetic diseases of acid-base transporters. Annu Rev Physiol. 2002;64:899–923.

Bobulescu IA, Moe OW. Na+/H+ exchangers in renal regulation of acid-base balance. Semin Nephrol. 2006;26:334–344.

Brown D, Wagner CA. Molecular mechanisms of acid-base sensing by the kidney. J Am Soc Nephrol. 2012;23:774–780.

Fry AC, Karet FE. Inherited renal acidoses. Physiology (Bethesda). 2007;22:202–211.

Good DW. Ammonium transport by the thick ascending limb of Henle's loop. Annu Rev Physiol. 1994;56:623–647.

Igarashi T, Inatomi J, Sekine T, et al. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet. 1999;23:264–266.

Karet FE. Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol. 2009;20:251–254.

Laing CM, Toye AM, Capasso G, Unwin RJ. Renal tubular acidosis: Developments in our understanding of the molecular basis. Int J Biochem Cell Biol. 2005;37:1151–1161.

Moe OW. Acute regulation of proximal tubule apical membrane Na/H exchanger NHE-3: Role of phosphorylation, protein, trafficking, and regulatory factors. J Am Soc Nephrol. 1999;10:2412–2425.

Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int. 2007;71:103–115.

Rose BD, Post TW. Clinical Physiology of Acid-Base and Electrolyte Disorders. 5th ed. McGraw-Hill: New York; 2001.

Seldin DW, Giebisch G. The Kidney: Physiology and Pathophysiology. 3rd ed. Lippincott Williams & Wilkins: Philadelphia; 2000.

Stone DK, Xie XS. Proton translocating ATPases: Issues in structure and function. Kidney Int. 1988;33:767–774.

Wakabayashi S, Shigekawa M, Pouysségur J. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev. 1997;77:51–74.

Wall SM. Recent advances in our understanding of intercalated cells. Curr Opin Nephrol Hypertens. 2005;14:480–484.

Journal Articles

Aronson PS, Nee J, Suhm MA. Modifier role of internal H in activating the Na-H exchanger in renal microvillus membrane vesicles. Nature. 1982;299:161–163.

Boron WF, Boulpaep EL. Intracellular pH regulation in the renal proximal tubule of the salamander: Basolateral image transport. J Gen Physiol. 1983;81:53–94.

Bruce LJ, Cope DL, Jones GK, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest. 1997;100:1693–1707.

Fry AC, Karet FE. Inherited renal acidoses. Physiology (Bethesda). 2007;22:202–211.

Geibel J, Giebisch G, Boron WF. Angiotensin II stimulates both Na-H exchange and Na/HCO3 cotransport in the rabbit proximal tubule. Proc Natl Acad Sci U S A. 1990;87:7917–7920.

Igarashi T, Inatomi J, Sekine T, et al. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet. 1999;23:264–266.

Karet FE. Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol. 2009;20:251–254.

Karet FE, Finberg KE, Nelson RD, et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999;21:84–90.

Laing CM, Toye AM, Capasso G, Unwin RJ. Renal tubular acidosis: Developments in our understanding of the molecular basis. Int J Biochem Cell Biol. 2005;37:1151–1161.

McKinney TD, Burg MB. Bicarbonate transport by rabbit cortical collecting tubules: Effect of acid and alkali loads in vivo on transport in vitroJ Clin Invest. 1977;60:766–768.

Petrovic S, Wang Z, Ma L, Soleimani M. Regulation of the apical image exchanger pendrin in rat cortical collecting duct in metabolic acidosis. Am J Physiol Renal Physiol. 2003;284:F103–F112.

Piermarini PM, Verlander JW, Royaux IE, Evans DH. Pendrin immunoreactivity in the gill epithelium of a euryhaline elasmobranch. Am J Physiol Regul Integr Comp Physiol. 2002;283:R983–R992.

Quentin F, Chambrey R, Trinh-Trang-Tan MM, et al. The image exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol. 2004;287:F1179–1188.

Romero MF, Hediger MA, Boulpaep EL, Boron WF. Expression cloning of the renal electrogenic Na/HCO3 cotransporter. Nature. 1997;387:409–413.

Royaux IE, Wall SM, Karniski LP, et al. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A. 2001;98:4221–4226.

Schwartz GJ, Al-Awqati Q. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest. 1985;75:1638–1644.

Sly WS, Hewett-Emmett D, Whyte MP, et al. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A. 1983;80:2752–2756.

Smith AN, Skaug J, Choate KA, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet. 2000;26:71–75.

Sun X, Yang LV, Tiegs BC, et al. Deletion of the pH sensor GPR4 decreases renal acid excretion. J Am Soc Nephrol. 2010;21:1745–1755.

Verlander JW, Hassell KA, Royaux IE, et al. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney. Role of pendrin in mineralocorticoid-induced hypertension. Hypertension. 2003;42:356–362.

Wall SM, Hassell KA, Royaux IE, et al. Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol. 2003;284:F229–F241.

Wang T, Malnic G, Giebisch G, Chan YL. Renal bicarbonate reabsorption in the rat. IV. Bicarbonate transport mechanisms in the early and late distal tubule. J Clin Invest. 1993;91:2776–2784.

Zhou Y, Zhao J, Bouyer P, Boron WF. Evidence from renal proximal tubules that image and solute reabsorption are acutely regulated not by pH but by basolateral image and CO2Proc Natl Acad Sci U S A. 2005;102:3875–3880.